Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Plant Methods ; 19(1): 132, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996870

RESUMO

BACKGROUND: Thermography is a popular tool to assess plant water-use behavior, as plant temperature is influenced by transpiration rate, and is commonly used in field experiments to detect plant water deficit. Its application in indoor automated phenotyping platforms is still limited and mainly focuses on differences in plant temperature between genotypes or treatments, instead of estimating stomatal conductance or transpiration rate. In this study, the transferability of commonly used thermography analysis protocols from the field to greenhouse phenotyping platforms was evaluated. In addition, the added value of combining thermal infrared (TIR) with hyperspectral imaging to monitor drought effects on plant transpiration rate (E) was evaluated. RESULTS: The sensitivity of commonly used TIR indices to detect drought-induced and genotypic differences in water status was investigated in eight maize inbred lines in the automated phenotyping platform PHENOVISION. Indices that normalized plant temperature for vapor pressure deficit and/or air temperature at the time of imaging were most sensitive to drought and could detect genotypic differences in the plants' water-use behavior. However, these indices were not strongly correlated to stomatal conductance and E. The canopy temperature depression index, the crop water stress index and the simplified stomatal conductance index were more suitable to monitor these traits, and were consequently used to develop empirical E prediction models by combining them with hyperspectral indices and/or environmental variables. Different modeling strategies were evaluated, including single index-based, machine learning and mechanistic models. Model comparison showed that combining multiple TIR indices in a random forest model can improve E prediction accuracy, and that the contribution of the hyperspectral data is limited when multiple indices are used. However, the empirical models trained on one genotype were not transferable to all eight inbred lines. CONCLUSION: Overall, this study demonstrates that existing TIR indices can be used to monitor drought stress and develop E prediction models in an indoor setup, as long as the indices normalize plant temperature for ambient air temperature or relative humidity.

3.
Plants (Basel) ; 12(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37631225

RESUMO

Plant organ growth results from the combined activity of cell division and cell expansion. The co-ordination of these two processes depends on the interplay between multiple hormones that determine the final organ size. Using the semidominant Hairy Sheath Frayed1 (Hsf1) maize mutant that hypersignals the perception of cytokinin (CK), we show that CK can reduce leaf size and growth rate by decreasing cell division. Linked to CK hypersignaling, the Hsf1 mutant has an increased jasmonic acid (JA) content, a hormone that can inhibit cell division. The treatment of wild-type seedlings with exogenous JA reduces maize leaf size and growth rate, while JA-deficient maize mutants have increased leaf size and growth rate. Expression analysis revealed the increased transcript accumulation of several JA pathway genes in the Hsf1 leaf growth zone. A transient treatment of growing wild-type maize shoots with exogenous CK also induced the expression of JA biosynthetic genes, although this effect was blocked by the co-treatment with cycloheximide. Together, our results suggest that CK can promote JA accumulation, possibly through the increased expression of specific JA pathway genes.

4.
Plant Cell ; 35(1): 218-238, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36066192

RESUMO

Ensuring food security for an ever-growing global population while adapting to climate change is the main challenge for agriculture in the 21st century. Although new technologies are being applied to tackle this problem, we are approaching a plateau in crop improvement using conventional breeding. Recent advances in CRISPR/Cas9-mediated gene engineering have paved the way to accelerate plant breeding to meet this increasing demand. However, many traits are governed by multiple small-effect genes operating in complex interactive networks. Here, we present the gene discovery pipeline BREEDIT, which combines multiplex genome editing of whole gene families with crossing schemes to improve complex traits such as yield and drought tolerance. We induced gene knockouts in 48 growth-related genes into maize (Zea mays) using CRISPR/Cas9 and generated a collection of over 1,000 gene-edited plants. The edited populations displayed (on average) 5%-10% increases in leaf length and up to 20% increases in leaf width compared with the controls. For each gene family, edits in subsets of genes could be associated with enhanced traits, allowing us to reduce the gene space to be considered for trait improvement. BREEDIT could be rapidly applied to generate a diverse collection of mutants to identify promising gene modifications for later use in breeding programs.


Assuntos
Edição de Genes , Zea mays , Zea mays/genética , Sistemas CRISPR-Cas/genética , Plantas Geneticamente Modificadas/genética , Herança Multifatorial , Melhoramento Vegetal , Genoma de Planta/genética
5.
Plant Sci ; 321: 111295, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35696903

RESUMO

Modern agriculture is struggling to meet the increasing food, silage and raw material demands due to the rapid growth of population and climate change. In Arabidopsis, DA1 and DAR1 are proteases that negatively regulate cell proliferation and control organ size. DA1 and DAR1 are activated by ubiquitination catalyzed by the E3 ligase BIG BROTHER (BB). Here, we characterized the DA1, DAR1 and BB gene families in maize and analyzed whether perturbation of these genes regulates organ size similar to what was observed in Arabidopsis. We generated da1_dar1a_dar1b triple CRISPR maize mutants and bb1_bb2 double mutants. Detailed phenotypic analysis showed that the size of leaf, stem, cob, and seed was not consistently enlarged in these mutants. Also overexpression of a dominant-negative DA1R333K allele, resembling the da1-1 allele of Arabidopsis which has larger leaves and seeds, did not alter the maize phenotype. The mild negative effects on plant height of the DA1R333K_bb1_bb2 mutant indicate that the genes in the DA1 pathway may control organ size in maize, albeit less obvious than in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Sementes/metabolismo , Zea mays/genética , Zea mays/metabolismo
6.
Plant Physiol ; 188(1): 411-424, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34791456

RESUMO

SAMBA has been identified as a plant-specific regulator of the anaphase-promoting complex/cyclosome (APC/C) that controls unidirectional cell cycle progression in Arabidopsis (Arabidopsis thaliana), but so far its role has not been studied in monocots. Here, we show the association of SAMBA with the APC/C is conserved in maize (Zea mays). Two samba genome edited mutants showed growth defects, such as reduced internode length, shortened upper leaves with erect leaf architecture, and reduced leaf size due to an altered cell division rate and cell expansion, which aggravated with plant age. The two mutants differed in the severity and developmental onset of the phenotypes, because samba-1 represented a knockout allele, while translation re-initiation in samba-3 resulted in a truncated protein that was still able to interact with the APC/C and regulate its function, albeit with altered APC/C activity and efficiency. Our data are consistent with a dosage-dependent role for SAMBA to control developmental processes for which a change in growth rate is pivotal.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/genética , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Fenótipo
7.
Plant Physiol ; 188(2): 782-794, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34791481

RESUMO

The plant shoot apex houses the shoot apical meristem, a highly organized and active stem-cell tissue where molecular signaling in discrete cells determines when and where leaves are initiated. We optimized a spatial transcriptomics approach, in situ sequencing (ISS), to colocalize the transcripts of 90 genes simultaneously on the same section of tissue from the maize (Zea mays) shoot apex. The RNA ISS technology reported expression profiles that were highly comparable with those obtained by in situ hybridizations (ISHs) and allowed the discrimination between tissue domains. Furthermore, the application of spatial transcriptomics to the shoot apex, which inherently comprised phytomers that are in gradual developmental stages, provided a spatiotemporal sequence of transcriptional events. We illustrate the power of the technology through PLASTOCHRON1 (PLA1), which was specifically expressed at the boundary between indeterminate and determinate cells and partially overlapped with ROUGH SHEATH1 and OUTER CELL LAYER4 transcripts. Also, in the inflorescence, PLA1 transcripts localized in cells subtending the lateral primordia or bordering the newly established meristematic region, suggesting a more general role of PLA1 in signaling between indeterminate and determinate cells during the formation of lateral organs. Spatial transcriptomics builds on RNA ISH, which assays relatively few transcripts at a time and provides a powerful complement to single-cell transcriptomics that inherently removes cells from their native spatial context. Further improvements in resolution and sensitivity will greatly advance research in plant developmental biology.


Assuntos
Células Vegetais , Proteínas de Plantas/química , Análise de Sequência de RNA/métodos , Zea mays/química , Expressão Gênica , Proteínas de Plantas/genética , Análise de Sequência de RNA/instrumentação , Zea mays/genética
8.
Plant Physiol ; 186(2): 1336-1353, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33788927

RESUMO

Drought at flowering and grain filling greatly reduces maize (Zea mays) yield. Climate change is causing earlier and longer-lasting periods of drought, which affect the growth of multiple maize organs throughout development. To study how long periods of water deficit impact the dynamic nature of growth, and to determine how these relate to reproductive drought, we employed a high-throughput phenotyping platform featuring precise irrigation, imaging systems, and image-based biomass estimations. Prolonged drought resulted in a reduction of growth rate of individual organs-though an extension of growth duration partially compensated for this-culminating in lower biomass and delayed flowering. However, long periods of drought did not affect the highly organized succession of maximal growth rates of the distinct organs, i.e. leaves, stems, and ears. Two drought treatments negatively affected distinct seed yield components: Prolonged drought mainly reduced the number of spikelets, and drought during the reproductive period increased the anthesis-silking interval. The identification of these divergent biomass and yield components, which were affected by the shift in duration and intensity of drought, will facilitate trait-specific breeding toward future climate-resilient crops.


Assuntos
Estresse Fisiológico , Zea mays/fisiologia , Biomassa , Mudança Climática , Secas , Flores/crescimento & desenvolvimento , Flores/fisiologia , Melhoramento Vegetal , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Água/fisiologia , Zea mays/crescimento & desenvolvimento
9.
Front Plant Sci ; 12: 640914, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692820

RESUMO

Hyperspectral imaging is a promising tool for non-destructive phenotyping of plant physiological traits, which has been transferred from remote to proximal sensing applications, and from manual laboratory setups to automated plant phenotyping platforms. Due to the higher resolution in proximal sensing, illumination variation and plant geometry result in increased non-biological variation in plant spectra that may mask subtle biological differences. Here, a better understanding of spectral measurements for proximal sensing and their application to study drought, developmental and diurnal responses was acquired in a drought case study of maize grown in a greenhouse phenotyping platform with a hyperspectral imaging setup. The use of brightness classification to reduce the illumination-induced non-biological variation is demonstrated, and allowed the detection of diurnal, developmental and early drought-induced changes in maize reflectance and physiology. Diurnal changes in transpiration rate and vapor pressure deficit were significantly correlated with red and red-edge reflectance. Drought-induced changes in effective quantum yield and water potential were accurately predicted using partial least squares regression and the newly developed Water Potential Index 2, respectively. The prediction accuracy of hyperspectral indices and partial least squares regression were similar, as long as a strong relationship between the physiological trait and reflectance was present. This demonstrates that current hyperspectral processing approaches can be used in automated plant phenotyping platforms to monitor physiological traits with a high temporal resolution.

11.
Int J Dev Biol ; 63(1-2): 45-55, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30919915

RESUMO

The conserved poly(ADP-ribosyl)ation (PAR) pathway consists of three genetic components that are potential targets to modulate the plant's energy homeostasis upon stress with the aim to improve yield stability in crops and help secure food supply. We studied the role of the PAR pathway component ADP-ribose/NADH pyrophosphohydrolase (AtNUDX7) in yield and mild drought stress by using a transgenic approach in Arabidopsis thaliana and maize (Zea mays). Arabidopsis AtNUDX7 cDNA was overexpressed in Arabidopsis and maize by means of the constitutive Cauliflower Mosaic Virus 35S promoter and the strong constitutive Brachypodium distachyon pBdEF1α promoter, respectively. Overexpression of AtNUDX7 in Arabidopsis improved seed parameters that were measured by a novel, automated method, accelerated flowering and reduced inflorescence height. This combination of beneficial traits suggested that AtNUDX7 overexpression in Arabidopsis might enhance the ADP-ribose recycling step and maintain energy levels by supplying an ATP source in the poly(ADP-ribosyl)ation energy homeostasis pathway. Arabidopsis and maize lines with high, medium and low overexpression levels of the AtNUDX7 gene were analysed in automated platforms and the inhibition of several growth parameters was determined under mild drought stress conditions. The data showed that the constitutive overexpression of the Arabidopsis AtNUDX7 gene in Arabidopsis and maize at varying levels did not improve tolerance to mild drought stress, but knocking down AtNUDX7 expression did, however at the expense of general growth under normal conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/enzimologia , Pirofosfatases/metabolismo , Sementes/enzimologia , Zea mays/enzimologia , Adenosina Difosfato Ribose/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Secas , NAD/metabolismo , Estresse Oxidativo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Pirofosfatases/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Estresse Fisiológico , Zea mays/genética , Zea mays/crescimento & desenvolvimento
12.
Plant Cell Environ ; 41(2): 374-382, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29143349

RESUMO

Research in maize is often performed using inbred lines that can be readily transformed, such as B104. However, because the B104 line flowers late, the kernels do not always mature before the end of the growing season, hampering routine seed yield evaluations of biotech traits introduced in B104 at many geographical locations. Therefore, we generated five hybrids by crossing B104 with the early-flowering inbred lines CML91, F7, H99, Mo17, and W153R and showed in three consecutive years that the hybrid lines proved to be suitable to evaluate seed yield under field conditions in a temperate climate. By assessing the two main processes driving maize leaf growth, being rate of growth (leaf elongation rate or LER) and the duration of growth (leaf elongation duration or LED) in this panel of hybrids, we showed that leaf growth heterosis was mainly the result of increased LER and not or to a lesser extent of LED. Ectopic expression of the transgenes GA20-oxidase (GA20-OX) and PLASTOCHRON1 (PLA1), known to stimulate the LER and LED, respectively, in the hybrids showed that leaf length heterosis can be stimulated by increased LER, but not by LED, indicating that LER rather than LED is the target for enhancing leaf growth heterosis.


Assuntos
Vigor Híbrido , Zea mays/crescimento & desenvolvimento , Vigor Híbrido/fisiologia , Melhoramento Vegetal , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Zea mays/genética
13.
Plant Biotechnol J ; 16(2): 615-627, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28730636

RESUMO

Growth is characterized by the interplay between cell division and cell expansion, two processes that occur separated along the growth zone at the maize leaf. To gain further insight into the transition between cell division and cell expansion, conditions were investigated in which the position of this transition zone was positively or negatively affected. High levels of gibberellic acid (GA) in plants overexpressing the GA biosynthesis gene GA20-OXIDASE (GA20OX-1OE ) shifted the transition zone more distally, whereas mild drought, which is associated with lowered GA biosynthesis, resulted in a more basal positioning. However, the increased levels of GA in the GA20OX-1OE line were insufficient to convey tolerance to the mild drought treatment, indicating that another mechanism in addition to lowered GA levels is restricting growth during drought. Transcriptome analysis with high spatial resolution indicated that mild drought specifically induces a reprogramming of transcriptional regulation in the division zone. 'Leaf Growth Viewer' was developed as an online searchable tool containing the high-resolution data.


Assuntos
Secas , Giberelinas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas
14.
Nat Commun ; 8: 14752, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28300078

RESUMO

Maize is the highest yielding cereal crop grown worldwide for grain or silage. Here, we show that modulating the expression of the maize PLASTOCHRON1 (ZmPLA1) gene, encoding a cytochrome P450 (CYP78A1), results in increased organ growth, seedling vigour, stover biomass and seed yield. The engineered trait is robust as it improves yield in an inbred as well as in a panel of hybrids, at several locations and over multiple seasons in the field. Transcriptome studies, hormone measurements and the expression of the auxin responsive DR5rev:mRFPer marker suggest that PLA1 may function through an increase in auxin. Detailed analysis of growth over time demonstrates that PLA1 stimulates the duration of leaf elongation by maintaining dividing cells in a proliferative, undifferentiated state for a longer period of time. The prolonged duration of growth also compensates for growth rate reduction caused by abiotic stresses.


Assuntos
Biomassa , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Plantas/genética , Sementes/genética , Zea mays/genética , Divisão Celular/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/metabolismo , Fatores de Tempo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
15.
Plant Cell ; 27(6): 1605-19, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26036253

RESUMO

Most molecular processes during plant development occur with a particular spatio-temporal specificity. Thus far, it has remained technically challenging to capture dynamic protein-protein interactions within a growing organ, where the interplay between cell division and cell expansion is instrumental. Here, we combined high-resolution sampling of the growing maize (Zea mays) leaf with tandem affinity purification followed by mass spectrometry. Our results indicate that the growth-regulating SWI/SNF chromatin remodeling complex associated with ANGUSTIFOLIA3 (AN3) was conserved within growing organs and between dicots and monocots. Moreover, we were able to demonstrate the dynamics of the AN3-interacting proteins within the growing leaf, since copurified GROWTH-REGULATING FACTORs (GRFs) varied throughout the growing leaf. Indeed, GRF1, GRF6, GRF7, GRF12, GRF15, and GRF17 were significantly enriched in the division zone of the growing leaf, while GRF4 and GRF10 levels were comparable between division zone and expansion zone in the growing leaf. These dynamics were also reflected at the mRNA and protein levels, indicating tight developmental regulation of the AN3-associated chromatin remodeling complex. In addition, the phenotypes of maize plants overexpressing miRNA396a-resistant GRF1 support a model proposing that distinct associations of the chromatin remodeling complex with specific GRFs tightly regulate the transition between cell division and cell expansion. Together, our data demonstrate that advancing from static to dynamic protein-protein interaction analysis in a growing organ adds insights in how developmental switches are regulated.


Assuntos
Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Zea mays/genética , Sequência Conservada/genética , Sequência Conservada/fisiologia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/fisiologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Espectrometria de Massas em Tandem
16.
Plant Physiol ; 164(3): 1350-64, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24488968

RESUMO

DNA methylation is an important and widespread epigenetic modification in plant genomes, mediated by DNA methyltransferases (DMTs). DNA methylation is known to play a role in genome protection, regulation of gene expression, and splicing and was previously associated with major developmental reprogramming in plants, such as vernalization and transition to flowering. Here, we show that DNA methylation also controls the growth processes of cell division and cell expansion within a growing organ. The maize (Zea mays) leaf offers a great tool to study growth processes, as the cells progressively move through the spatial gradient encompassing the division zone, transition zone, elongation zone, and mature zone. Opposite to de novo DMTs, the maintenance DMTs were transcriptionally regulated throughout the growth zone of the maize leaf, concomitant with differential CCGG methylation levels in the four zones. Surprisingly, the majority of differentially methylated sequences mapped on or close to gene bodies and not to repeat-rich loci. Moreover, especially the 5' and 3' regions of genes, which show overall low methylation levels, underwent differential methylation in a developmental context. Genes involved in processes such as chromatin remodeling, cell cycle progression, and growth regulation, were differentially methylated. The presence of differential methylation located upstream of the gene anticorrelated with transcript expression, while gene body differential methylation was unrelated to the expression level. These data indicate that DNA methylation is correlated with the decision to exit mitotic cell division and to enter cell expansion, which adds a new epigenetic level to the regulation of growth processes.


Assuntos
Metilação de DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Zea mays/genética , Sequência de Bases , Divisão Celular , Centrômero/metabolismo , Loci Gênicos , Metiltransferases/metabolismo , Filogenia , Folhas de Planta/enzimologia , Reação em Cadeia da Polimerase , Polimorfismo Genético , Transcrição Gênica , Zea mays/citologia , Zea mays/enzimologia , Zea mays/crescimento & desenvolvimento
17.
Curr Biol ; 22(13): 1183-7, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22683264

RESUMO

Plant growth rate is largely determined by the transition between the successive phases of cell division and expansion. A key role for hormone signaling in determining this transition was inferred from genetic approaches and transcriptome analysis in the Arabidopsis root tip. We used the developmental gradient at the maize leaf base as a model to study this transition, because it allows a direct comparison between endogenous hormone concentrations and the transitions between dividing, expanding, and mature tissue. Concentrations of auxin and cytokinins are highest in dividing tissues, whereas bioactive gibberellins (GAs) show a peak at the transition zone between the division and expansion zone. Combined metabolic and transcriptomic profiling revealed that this GA maximum is established by GA biosynthesis in the division zone (DZ) and active GA catabolism at the onset of the expansion zone. Mutants defective in GA synthesis and signaling, and transgenic plants overproducing GAs, demonstrate that altering GA levels specifically affects the size of the DZ, resulting in proportional changes in organ growth rates. This work thereby provides a novel molecular mechanism for the regulation of the transition from cell division to expansion that controls organ growth and size.


Assuntos
Giberelinas/metabolismo , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Divisão Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Giberelinas/biossíntese , Mutação , Folhas de Planta/metabolismo , Zea mays/genética , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...